而次世代定序的發明並應用於臨床服務後,改變了許多的臨床情境。以往我們需要做很多檢查,才能試著去猜測可能的致病基因,但現在我們可以在排除常見之次發性病因後,根據病史、家族史懷疑是遺傳性肌肉病變後, 就可以直接安排次世代定序基因檢查去排查可能的致病基因,而從文獻上,次世代定序大約可以找到 50-60% 的致病基因。8-10 因此,曾有人認為肌肉切片已無角色,以後直接做基因檢測就好。但筆者認為這還言之過早,我們對於基因體學的瞭解雖然這幾年進步神速,進展很多,但在浩瀚的知識大海中,我們仍屬無知。就筆者經驗,能夠單靠次世代定序基因檢 測的結果,就可以放心做出診斷的仍屬少數;大部份的個案仍需要進行基因型導引之各面向檢查(Genotype-guided examination)來做臨床驗證,而其中肌肉切片常是最重要且無法忽略的一項檢查,畢竟觀察受到影響的器官組織仍是最直接的黃金診斷方法。而在切片的同時,我們也可以安排特定的分子學檢驗來做基因檢測的臨床驗證 (eg. muscle mt.DNA copy number and mitochondrial DNA sequencing in muscle in patients with mitochondrial depletion syndrome)。11
當然有時候我們也會選擇先做肌肉切片排除次發性病因後,再來做自費的基因檢測,但考慮到切片是個侵入性處置,病患不太可能會答應做完基因檢測找到可能致病基因後,再做一次肌肉切片。因此筆者建議將肌肉切片視為一個取得肌肉檢體的方式,而取到的檢體則是可以用於病理組織學判讀、分子生物學檢驗或肌肉細胞基因檢測(somatic variant or mitochondrial DNA)。而我們在執行muscle biopsy 時,則是要以「一期一會」(いちごいちえ)的心態,在病人安全的前提下,經過病人同意,將肌肉檢體做完整的保存,以提供未來診斷使用。
1. Waclawik AJ, Lanska DJ. Antecedents, development, adoption, and application of Duchenne´s trocar for histopathologic studies of neuromuscular disorders in the nineteenth century. Journal of the History of the Neurosciences 2019; 28(2): 176-94.
2. Clarac F, Massion J, Smith AM. Duchenne, Charcot and Babinski, three neurologists of La Salpetrière Hospital, and their contribution to concepts of the central organization of motor synergy. J Physiol Paris 2009; 103(6): 361-76.
3. Jongebloed WL, Stokroos, D., Kalicharan, D., and Van der Want, J.J.L. Is Cryopreservation Superior Over Tannic Acid/Arginine/ Osmium Tetroxide non-Coating Preparation in Field Emission Scanning Electron Microscopy. Scanning Microscopy 1999; 13: 93- 109.
4. J. RNaB. Sectioning and Cryosectioning for Electron Microscopy. Practical Methods in Electron Microscopy, ; Vol 13, Elsevier, Amsterdam.
5. Cai C, Anthony DC, Pytel P. A pattern-based approach to the interpretation of skeletal muscle biopsies. Mod Pathol 2019; 32(4): 462-83.
6. Jackson CE, Barohn RJ. A pattern recognition approach to myopathy. Continuum (Minneap Minn) 2013; 19(6 Muscle Disease): 1674-97.
7. Dubowitz V, Sewry C. Preface to the Fourth Edition. In: Dubowitz V, Sewry CA, Oldfors A, eds. Muscle Biopsy: A Practical Approach (Fourth Edition). Oxford: W.B. Saunders; 2013: vii.
8. Chen P-S, Chao C-C, Tsai L-K, Huang H-Y, Chien Y-H, Huang P-H, Hwu W-L, Hsieh S-T, Lee N-C, Hsueh H-W, Yang C-C. Diagnostic Challenges of Neuromuscular Disorders after Whole Exome Sequencing. Journal of Neuromuscular Diseases 2023; 10: 667-84.
9. Hsueh HW, Weng WC, Fan PC, Chien YH, Yang FJ, Lee WT, Lin RJ, Hwu WL, Yang CC, Lee NC. The diversity of hereditary neuromuscular diseases: Experiences from molecular diagnosis. J Formos Med Assoc 2022; 121(12): 2574-83.
10. Thompson R, Spendi S, Roos A, Bourque PR, Warman Chardon J, Kirschner J, Horvath R, Lochmüller H. Advances in the diagnosis of inherited neuromuscular diseases and implications for therapy development. Lancet Neurol 2020; 19(6): 522-32.
11. Cheng CY, Chang KC, Hsueh HW, Lee NC, Huang PH, Yang CC, Hwu WL, Hsieh ST, Chao CC. Thymidine Kinase 2 Deciency-Induced Adult-Onset Ptosis and Proximal Weakness. Neurol Clin Pract 2021; 11(3): e379-e82.
12. Gonorazky HD, Naumenko S, Ramani AK, Nelakuditi V, Mashouri P, Wang P, Kao D, Ohri K, Viththiyapaskaran S, Tarnopolsky MA, Mathews KD, Moore SA, Osorio AN, Villanova D, Kemaladewi DU, Cohn RD, Brudno M, Dowling JJ. Expanding the Boundaries of RNA Sequencing as a Diagnostic Tool for Rare Mendelian Disease. The American Journal of Human Genetics 2019; 104(3): 466-83.
13. Hwang B, Lee JH, Bang D. Single-cell RNA sequencing technologies and bioinformaticspipelines. Experimental & Molecular Medicine 2018; 50(8): 1-14.
14. Williams CG, Lee HJ, Asatsuma T, Vento-Tormo R, Haque A. An introduction to spatial transcriptomics for biomedical research. Genome Medicine 2022; 14(1): 68